Game Physics JS: The maths of rotations

Rotating objects in 2D

Orientation represents the angle at which an object is facing.

Rotation is a change of orientation.

Angular velocity is the first derivative of orientation with respect to time.

A vector can represent an orientation:

θ = [cosθ, sinθ]

Angular speed is a scalar (ex: 4π rad/s).

An object has an origin and a center of mass.

If it rotates by an angle θ and translates by an offset p, any point q with a relative position qb will rotate like this:

q' = ⎡ cosθ -sinθ ⎤ qb + p ⎣ sinθ cosθ ⎦

This is called a transformation, and q' is the new position of q in world coordinates.

Any sequence of translations and rotations can be represented with a single transformation (a rotation followed by a translation).

The simplest origin we can choose for an object is its center of mass (center of gravity).

Orientation in 3D

Euler angles offer 3 degrees of freedom but have downsides (order of rotations, gimbal lock...).

Axis-angle (and by extension, Quaternions) gets rid of the Euler angles by specifying a custom axis of rotation and an angle.

Matrices are the format used by rendering engines (and GPUs) to represent transformations.

Euler / axis-angle / quaternion rotations can be translated to 3x3 matrices.

A full transformation (rotation and translation) can be represented with a 4x4 matrix.

Quaternions are 4D vectors (with components w,x,y,z) representing an axis-angle rotation like this:

[cos(θ/2), xsin(θ/2), ysin(θ/2), zsin(θ/2)

With an axis [x, y, z] and angle θ.

A correct rotation is represented by a normalized quaternion. Its magnitude can also be measured by Pythagore:

sqrt(w²+x²+y²+z²) = 1

Angular velocity and acceleration

The angular velocity θ̇ af rate r and axis â is equal to:

θ̇ = râ

To update the orientation quaternion from the angular velocity:

̭θ' = ̭θ + Δt/2 ̭ω̭θ

With ω̭ = [0, θ̇ x, θ̇ y, θ̇ z] , and the circumflex below "   ̭ " representing a quaternion.

Note that ̭ω is not an orientation quaternion (and should not be normalized), and ω̭θ̭ is a quaternion multiplication (seen later).

The velocity of a point on a rotating object is:

q̇ = θ̇ × (q - p) + ṗ

With a point velocity , position q (in world coordinates), origin p and angular velocity θ̇ .

Angular acceleration is the simple derivative of speed:

θ̇ ' = θ̇ + θ̈t

Implementing the maths

We will have 3x3 matrices for rotations and 4x4 matrices for full transformations.

A 3D vector can be rotated by multiplying it by a 3x3 matrix.

v' = Mv

The effect of two matrices can be combined by multiplying them together.

class Matrix3 { data; // 9 elements constructor(data){ this.data = data; } // Transform a 3D vector transform(v){ return new Vector3( v.x*this.data[0] + v.y*this.data[1] + v.z*this.data[2], v.x*this.data[3] + v.y*this.data[4] + v.z*this.data[5], v.x*this.data[6] + v.y*this.data[7] + v.z*this.data[8], ); } // Multiply with another Matrix3 multiply(o){ return Matrix3([ this.data[0]*o.data[0] + this.data[1]*o.data[3] + this.data[2]*o.data[6], this.data[0]*o.data[1] + this.data[1]*o.data[4] + this.data[2]*o.data[7], this.data[0]*o.data[2] + this.data[1]*o.data[5] + this.data[2]*o.data[8], this.data[3]*o.data[0] + this.data[4]*o.data[3] + this.data[5]*o.data[6], this.data[3]*o.data[1] + this.data[4]*o.data[4] + this.data[5]*o.data[7], this.data[3]*o.data[2] + this.data[4]*o.data[5] + this.data[5]*o.data[8], this.data[6]*o.data[0] + this.data[7]*o.data[3] + this.data[8]*o.data[6], this.data[6]*o.data[1] + this.data[7]*o.data[4] + this.data[8]*o.data[7], this.data[6]*o.data[2] + this.data[7]*o.data[5] + this.data[8]*o.data[8] ]); } } class Matrix4 { data; // 12 elements + 3x4 + (0,0,0,1) on the last row constructor(data){ this.data = data; } // Transform a 3D vector transform(v){ return new Vector3( v.x*this.data[0] + v.y*this.data[1] + v.z*this.data[2] + this.data[3], v.x*this.data[4] + v.y*this.data[5] + v.z*this.data[6] + this.data[7], v.x*this.data[8] + v.y*this.data[9] + v.z*this.data[10] + this.data[11], ); } // Multiply with another Matrix4 multiply(o){ return new Matrix4([ o.data[0]*this.data[0] + o.data[4]*this.data[1] + o.data[8]*this.data[2], o.data[1]*this.data[0] + o.data[5]*this.data[1] + o.data[9]*this.data[2], o.data[2]*this.data[0] + o.data[6]*this.data[1] + o.data[10]*this.data[2], o.data[3]*this.data[0] + o.data[7]*this.data[1] + o.data[11]*this.data[2] + this.data[3], o.data[0]*this.data[4] + o.data[4]*this.data[5] + o.data[8]*this.data[6], o.data[1]*this.data[4] + o.data[5]*this.data[5] + o.data[9]*this.data[6], o.data[2]*this.data[4] + o.data[6]*this.data[5] + o.data[10]*this.data[6], o.data[3]*this.data[4] + o.data[7]*this.data[5] + o.data[11]*this.data[6] + this.data[7], o.data[0]*this.data[8] + o.data[4]*this.data[9] + o.data[8]*this.data[10], o.data[1]*this.data[8] + o.data[5]*this.data[9] + o.data[9]*this.data[10], o.data[2]*this.data[8] + o.data[6]*this.data[9] + o.data[10]this.*data[10], o.data[3]*this.data[8] + o.data[7]*this.data[9] + o.data[11]*this.data[10] + this.data[11] ]); } }

Matrix inverse (TODO p.217)

Matrix transpose (TODO p.221)

Converting a quaternion to a matrix (TODO p.222)

Transform vectors (TODO p.224)

Change the basis of a matrix (TODO p.228)

Quaternion class (TODO p.230-234)



Next