Orientation represents the angle at which an object is facing.
Rotation is a change of orientation.
Angular velocity is the first derivative of orientation with respect to time.
A vector can represent an orientation:
θ = [cosθ, sinθ]
Angular speed is a scalar (ex: 4π rad/s).
An object has an origin and a center of mass.
If it rotates by an angle θ and translates by an offset p, any point q with a relative position qb will rotate like this:
q' = ⎡ cosθ -sinθ ⎤ qb + p
⎣ sinθ cosθ ⎦
This is called a transformation, and q' is the new position of q in world coordinates.
Any sequence of translations and rotations can be represented with a single transformation (a rotation followed by a translation).
The simplest origin we can choose for an object is its center of mass (center of gravity).
Euler angles offer 3 degrees of freedom but have downsides (order of rotations, gimbal lock...).
Axis-angle (and by extension, Quaternions) gets rid of the Euler angles by specifying a custom axis of rotation and an angle.
Matrices are the format used by rendering engines (and GPUs) to represent transformations.
Euler / axis-angle / quaternion rotations can be translated to 3x3 matrices.
A full transformation (rotation and translation) can be represented with a 4x4 matrix.
Quaternions are 4D vectors (with components w,x,y,z) representing an axis-angle rotation like this:
[cos(θ/2), xsin(θ/2), ysin(θ/2), zsin(θ/2)
With an axis [x, y, z] and angle θ.
A correct rotation is represented by a normalized quaternion. Its magnitude can also be measured by Pythagore:
sqrt(w²+x²+y²+z²) = 1
The angular velocity θ̇ af rate r and axis â is equal to:
θ̇ = râ
To update the orientation quaternion from the angular velocity:
̭θ' = ̭θ + Δt/2 ̭ω̭θ
With ω̭ = [0, θ̇ x, θ̇ y, θ̇ z] , and the circumflex below " ̭ " representing a quaternion.
Note that ̭ω is not an orientation quaternion (and should not be normalized), and ω̭θ̭ is a quaternion multiplication (seen later).
The velocity of a point on a rotating object is:
q̇ = θ̇ × (q - p) + ṗ
With a point velocity q̇ , position q (in world coordinates), origin p and angular velocity θ̇ .
Angular acceleration is the simple derivative of speed:
θ̇ ' = θ̇ + θ̈t
We will have 3x3 matrices for rotations and 4x4 matrices for full transformations.
A 3D vector can be rotated by multiplying it by a 3x3 matrix.
v' = Mv
The effect of two matrices can be combined by multiplying them together.
class Matrix3 {
data; // 9 elements
constructor(data){
this.data = data;
}
// Transform a 3D vector
transform(v){
return new Vector3(
v.x*this.data[0] + v.y*this.data[1] + v.z*this.data[2],
v.x*this.data[3] + v.y*this.data[4] + v.z*this.data[5],
v.x*this.data[6] + v.y*this.data[7] + v.z*this.data[8],
);
}
// Multiply with another Matrix3
multiply(o){
return Matrix3([
this.data[0]*o.data[0] + this.data[1]*o.data[3] + this.data[2]*o.data[6],
this.data[0]*o.data[1] + this.data[1]*o.data[4] + this.data[2]*o.data[7],
this.data[0]*o.data[2] + this.data[1]*o.data[5] + this.data[2]*o.data[8],
this.data[3]*o.data[0] + this.data[4]*o.data[3] + this.data[5]*o.data[6],
this.data[3]*o.data[1] + this.data[4]*o.data[4] + this.data[5]*o.data[7],
this.data[3]*o.data[2] + this.data[4]*o.data[5] + this.data[5]*o.data[8],
this.data[6]*o.data[0] + this.data[7]*o.data[3] + this.data[8]*o.data[6],
this.data[6]*o.data[1] + this.data[7]*o.data[4] + this.data[8]*o.data[7],
this.data[6]*o.data[2] + this.data[7]*o.data[5] + this.data[8]*o.data[8]
]);
}
}
class Matrix4 {
data; // 12 elements + 3x4 + (0,0,0,1) on the last row
constructor(data){
this.data = data;
}
// Transform a 3D vector
transform(v){
return new Vector3(
v.x*this.data[0] + v.y*this.data[1] + v.z*this.data[2] + this.data[3],
v.x*this.data[4] + v.y*this.data[5] + v.z*this.data[6] + this.data[7],
v.x*this.data[8] + v.y*this.data[9] + v.z*this.data[10] + this.data[11],
);
}
// Multiply with another Matrix4
multiply(o){
return new Matrix4([
o.data[0]*this.data[0] + o.data[4]*this.data[1] + o.data[8]*this.data[2],
o.data[1]*this.data[0] + o.data[5]*this.data[1] + o.data[9]*this.data[2],
o.data[2]*this.data[0] + o.data[6]*this.data[1] + o.data[10]*this.data[2],
o.data[3]*this.data[0] + o.data[7]*this.data[1] + o.data[11]*this.data[2] + this.data[3],
o.data[0]*this.data[4] + o.data[4]*this.data[5] + o.data[8]*this.data[6],
o.data[1]*this.data[4] + o.data[5]*this.data[5] + o.data[9]*this.data[6],
o.data[2]*this.data[4] + o.data[6]*this.data[5] + o.data[10]*this.data[6],
o.data[3]*this.data[4] + o.data[7]*this.data[5] + o.data[11]*this.data[6] + this.data[7],
o.data[0]*this.data[8] + o.data[4]*this.data[9] + o.data[8]*this.data[10],
o.data[1]*this.data[8] + o.data[5]*this.data[9] + o.data[9]*this.data[10],
o.data[2]*this.data[8] + o.data[6]*this.data[9] + o.data[10]this.*data[10],
o.data[3]*this.data[8] + o.data[7]*this.data[9] + o.data[11]*this.data[10] + this.data[11]
]);
}
}
Matrix inverse (TODO p.217)
Matrix transpose (TODO p.221)
Converting a quaternion to a matrix (TODO p.222)
Transform vectors (TODO p.224)
Change the basis of a matrix (TODO p.228)
Quaternion class (TODO p.230-234)