Game Physics JS: Laws of motion for rigid bodies

The rigid body

Contrary to particles, a rigid body has a volume and can rotate.

Let's rewrite the RigidBody class to include rotations.

Newton-2 for rotation

We saw that a change in velocity depends on a force acting on a body and its inverse mass.

For rotation, the thange in angular velocity depends on torque τ and moment of inertia I.

θ̈ = I-1 τ

Torque is a twisting force. It is linked to a force f applied to a point pf (relative to the object's center of mass) by:

τ = pf × f

Every force applied to an object provokes both linear acceleration and torque.

In 3D, torque has an axis and a magnitude a:

τ = a d̂

The moment of inertia is the rotational equivalent of mass, or how difficult it is to rotate an object.

However, it depends of how you spin it. There's a different inertia in each axis, so we represent it with a Matrix3 "inertia tensor".

Torque is expressed in World coordinates, but the inertia tensor is local. We can derive it at each frame (see transformInertiaTensor).

D'alembert for rotation

The global torque is equal to the sum of all torques. We will have a dedicated accumulator.

Gravity is always applied to the center of mass, so it doesn't create any torque.

Force generators (TODO p.256)

Rigid body itegration

Let's update position and orientation based of forces and torques (da is the angular damping):

θ˙' = θ˙ (da)t + θ¨t

JavaScript implementation

class RigidBody { position; // Vector3 orientation; // Quaternion velocity; // Vector3 inverseMass; // float linearDamping; // float angularDamping; // float iverseInertiaTensor; // Matrix3 iverseInertiaTensorWorld; // Matrix3 rotation; // angular velocity, Vector3 transformMatrix; // Matrix4, derived from position and orientation once per frame forceAccum; // Vector3 torqueAccum; // Vector3 isAwake; // boolean constructor(position, orientation, velocity, inverseMass, linearDamping, angularDamping){ this.position = position; this.orientation = orientation; this.velocity = velocity; this.inverseMass = inverseMass; this.linearDamping = linearDamping; this.angularDamping = angularDamping; this.iverseInertiaTensor = new Matrix3(); this.iverseInertiaTensorWorld = new Matrix3(); this.rotation = new Vector3(); this.transformMatrix = new Matrix4(); this.forceAccum = new Vector3(); this.torqueAccum = new Vector3(); this.isAwake = true; } setInertiaTensor(inertiaTensor){ this.iverseInertiaTensor = inertiaTensor.inverse(); } transformInertiaTensor(q, iitBody, rotmat){ var t4 = rotmat.data[0]*iitBody.data[0]+ rotmat.data[1]*iitBody.data[3]+ rotmat.data[2]*iitBody.data[6]; var t9 = rotmat.data[0]*iitBody.data[1]+ rotmat.data[1]*iitBody.data[4]+ rotmat.data[2]*iitBody.data[7]; var t14 = rotmat.data[0]*iitBody.data[2]+ rotmat.data[1]*iitBody.data[5]+ rotmat.data[2]*iitBody.data[8]; var t28 = rotmat.data[4]*iitBody.data[0]+ rotmat.data[5]*iitBody.data[3]+ rotmat.data[6]*iitBody.data[6]; var t33 = rotmat.data[4]*iitBody.data[1]+ rotmat.data[5]*iitBody.data[4]+ rotmat.data[6]*iitBody.data[7]; var t38 = rotmat.data[4]*iitBody.data[2]+ rotmat.data[5]*iitBody.data[5]+ rotmat.data[6]*iitBody.data[8]; var t52 = rotmat.data[8]*iitBody.data[0]+ rotmat.data[9]*iitBody.data[3]+ rotmat.data[10]*iitBody.data[6]; var t57 = rotmat.data[8]*iitBody.data[1]+ rotmat.data[9]*iitBody.data[4]+ rotmat.data[10]*iitBody.data[7]; var t62 = rotmat.data[8]*iitBody.data[2]+ rotmat.data[9]*iitBody.data[5]+ rotmat.data[10]*iitBody.data[8]; this.iverseInertiaTensorWorld.data[0] = t4*rotmat.data[0]+ t9*rotmat.data[1]+ t14*rotmat.data[2]; this.iverseInertiaTensorWorld.data[1] = t4*rotmat.data[4]+ t9*rotmat.data[5]+ t14*rotmat.data[6]; this.iverseInertiaTensorWorld.data[2] = t4*rotmat.data[8]+ t9*rotmat.data[9]+ t14*rotmat.data[10]; this.iverseInertiaTensorWorld.data[3] = t28*rotmat.data[0]+ t33*rotmat.data[1]+ t38*rotmat.data[2]; this.iverseInertiaTensorWorld.data[4] = t28*rotmat.data[4]+ t33*rotmat.data[5]+ t38*rotmat.data[6]; this.iverseInertiaTensorWorld.data[5] = t28*rotmat.data[8]+ t33*rotmat.data[9]+ t38*rotmat.data[10]; this.iverseInertiaTensorWorld.data[6] = t52*rotmat.data[0]+ t57*rotmat.data[1]+ t62*rotmat.data[2]; this.iverseInertiaTensorWorld.data[7] = t52*rotmat.data[4]+ t57*rotmat.data[5]+ t62*rotmat.data[6]; this.iverseInertiaTensorWorld.data[8] = t52*rotmat.data[8]+ t57*rotmat.data[9]+ t62*rotmat.data[10]; } calculateDerivedData(){ this.orientation.normalize(); this.calculateTransformMatrix(this.position, this.orientation); this.transformInertiaTensor(this.orientation, this.inverseInertiaTensor, this.transformMatrix); } calculateTransformMatrix(position, orientation){ this.transformMatrix.data[0] = 1-2*orientation.j*orientation.j - 2*orientation.k*orientation.k; this.transformMatrix.data[1] = 2*orientation.i*orientation.j - 2*orientation.r*orientation.k; this.transformMatrix.data[2] = 2*orientation.i*orientation.k + 2*orientation.r*orientation.j; this.transformMatrix.data[3] = position.x; transformMatrix.data[4] = 2*orientation.i*orientation.j + 2*orientation.r*orientation.k; this.transformMatrix.data[5] = 1-2*orientation.i*orientation.i - 2*orientation.k*orientation.k; this.transformMatrix.data[6] = 2*orientation.j*orientation.k - 2*orientation.r*orientation.i; this.transformMatrix.data[7] = position.y; this.transformMatrix.data[8] = 2*orientation.i*orientation.k - 2*orientation.r*orientation.j; this.transformMatrix.data[9] = 2*orientation.j*orientation.k + 2*orientation.r*orientation.i; this.transformMatrix.data[10] = 1-2*orientation.i*orientation.i - 2*orientation.j*orientation.j; this.transformMatrix.data[11] = position.z; } addForce(force){ this.forceAccum.add(force); // Vector3 this.isAwake = true; } addForceAtBodyPoint(force, point){ var pt = getPointInWorldSpace(point); this.addForceAtPoint(force; pt); this.isAwake = true; } addForceAtBodyPoint(force, point){ var pt = point.clone(); pt.sub(position); this.forceAccum.add(force); this.torqueAccum.add(vectorProduct(pt, force)); this.isAwake = true; } clearAccumulators(){ this.forceAccum = new Vector3(); this.torqueAccum = new Vector3(); } integrate(duration){ // Calculate linear acceleration from force inputs var lastFrameAcceleration = acceleration.clone(); lastFrameAcceleration.addScaledVector(this.forceAccum, this.inverseMass); // Calculate angular acceleration from torque inputs var angularAcceleration = this.inverseInertiaTensorWorld.transform(this.torqueAccum); // Adjust velocities // Update linear velocity from both acceleration and impulse this.velocity.addScaledVector(lastFrameAcceleration, duration); // Update angular velocity from both acceleration and impulse this.rotation.addScaledVector(angularAcceleration, duration); // Impose drag this.velocity.scale(this.linearDamping ** duration); this.rotation.scale(angularDamping ** duration); // Adjust positions // Update linear position this.position.addScaledVector(this.velocity, duration); // Update angular position this.orientation.addScaledVector(this.rotation, duration); // Normalize the orientation, and update the matrices with the new position and orientation this.calculateDerivedData(); // Clear accumulators this.clearAccumulators(); } }



Next